Copied to
clipboard

G = C42.Dic7order 448 = 26·7

2nd non-split extension by C42 of Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.2Dic7, (C4×C28).2C4, (C2×C28).5D4, (D4×C14).2C4, (C2×Q8).3D14, (C2×D4).2Dic7, C4.4D4.3D7, C28.10D42C2, C72(C42.C4), (Q8×C14).3C22, C14.24(C23⋊C4), C2.9(C23⋊Dic7), C22.15(C23.D7), (C2×C28).9(C2×C4), (C2×C4).7(C7⋊D4), (C2×C4).2(C2×Dic7), (C7×C4.4D4).1C2, (C2×C14).100(C22⋊C4), SmallGroup(448,99)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C42.Dic7
C1C7C14C2×C14C2×C28Q8×C14C28.10D4 — C42.Dic7
C7C14C2×C14C2×C28 — C42.Dic7
C1C2C22C2×Q8C4.4D4

Generators and relations for C42.Dic7
 G = < a,b,c,d | a4=b4=1, c14=b2, d2=b2c7, ab=ba, cac-1=a-1b2, dad-1=a-1b-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c13 >

Subgroups: 236 in 64 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C42, C22⋊C4, M4(2), C2×D4, C2×Q8, C28, C2×C14, C2×C14, C4.10D4, C4.4D4, C7⋊C8, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C42.C4, C4.Dic7, C4×C28, C7×C22⋊C4, D4×C14, Q8×C14, C28.10D4, C7×C4.4D4, C42.Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, Dic7, D14, C23⋊C4, C2×Dic7, C7⋊D4, C42.C4, C23.D7, C23⋊Dic7, C42.Dic7

Smallest permutation representation of C42.Dic7
On 112 points
Generators in S112
(1 15)(3 17)(5 19)(7 21)(9 23)(11 25)(13 27)(29 68 43 82)(30 69 44 83)(31 70 45 84)(32 71 46 57)(33 72 47 58)(34 73 48 59)(35 74 49 60)(36 75 50 61)(37 76 51 62)(38 77 52 63)(39 78 53 64)(40 79 54 65)(41 80 55 66)(42 81 56 67)(85 99)(87 101)(89 103)(91 105)(93 107)(95 109)(97 111)
(1 87 15 101)(2 102 16 88)(3 89 17 103)(4 104 18 90)(5 91 19 105)(6 106 20 92)(7 93 21 107)(8 108 22 94)(9 95 23 109)(10 110 24 96)(11 97 25 111)(12 112 26 98)(13 99 27 85)(14 86 28 100)(29 82 43 68)(30 69 44 83)(31 84 45 70)(32 71 46 57)(33 58 47 72)(34 73 48 59)(35 60 49 74)(36 75 50 61)(37 62 51 76)(38 77 52 63)(39 64 53 78)(40 79 54 65)(41 66 55 80)(42 81 56 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 66 22 59 15 80 8 73)(2 79 23 72 16 65 9 58)(3 64 24 57 17 78 10 71)(4 77 25 70 18 63 11 84)(5 62 26 83 19 76 12 69)(6 75 27 68 20 61 13 82)(7 60 28 81 21 74 14 67)(29 92 50 85 43 106 36 99)(30 105 51 98 44 91 37 112)(31 90 52 111 45 104 38 97)(32 103 53 96 46 89 39 110)(33 88 54 109 47 102 40 95)(34 101 55 94 48 87 41 108)(35 86 56 107 49 100 42 93)

G:=sub<Sym(112)| (1,15)(3,17)(5,19)(7,21)(9,23)(11,25)(13,27)(29,68,43,82)(30,69,44,83)(31,70,45,84)(32,71,46,57)(33,72,47,58)(34,73,48,59)(35,74,49,60)(36,75,50,61)(37,76,51,62)(38,77,52,63)(39,78,53,64)(40,79,54,65)(41,80,55,66)(42,81,56,67)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,87,15,101)(2,102,16,88)(3,89,17,103)(4,104,18,90)(5,91,19,105)(6,106,20,92)(7,93,21,107)(8,108,22,94)(9,95,23,109)(10,110,24,96)(11,97,25,111)(12,112,26,98)(13,99,27,85)(14,86,28,100)(29,82,43,68)(30,69,44,83)(31,84,45,70)(32,71,46,57)(33,58,47,72)(34,73,48,59)(35,60,49,74)(36,75,50,61)(37,62,51,76)(38,77,52,63)(39,64,53,78)(40,79,54,65)(41,66,55,80)(42,81,56,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,22,59,15,80,8,73)(2,79,23,72,16,65,9,58)(3,64,24,57,17,78,10,71)(4,77,25,70,18,63,11,84)(5,62,26,83,19,76,12,69)(6,75,27,68,20,61,13,82)(7,60,28,81,21,74,14,67)(29,92,50,85,43,106,36,99)(30,105,51,98,44,91,37,112)(31,90,52,111,45,104,38,97)(32,103,53,96,46,89,39,110)(33,88,54,109,47,102,40,95)(34,101,55,94,48,87,41,108)(35,86,56,107,49,100,42,93)>;

G:=Group( (1,15)(3,17)(5,19)(7,21)(9,23)(11,25)(13,27)(29,68,43,82)(30,69,44,83)(31,70,45,84)(32,71,46,57)(33,72,47,58)(34,73,48,59)(35,74,49,60)(36,75,50,61)(37,76,51,62)(38,77,52,63)(39,78,53,64)(40,79,54,65)(41,80,55,66)(42,81,56,67)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,87,15,101)(2,102,16,88)(3,89,17,103)(4,104,18,90)(5,91,19,105)(6,106,20,92)(7,93,21,107)(8,108,22,94)(9,95,23,109)(10,110,24,96)(11,97,25,111)(12,112,26,98)(13,99,27,85)(14,86,28,100)(29,82,43,68)(30,69,44,83)(31,84,45,70)(32,71,46,57)(33,58,47,72)(34,73,48,59)(35,60,49,74)(36,75,50,61)(37,62,51,76)(38,77,52,63)(39,64,53,78)(40,79,54,65)(41,66,55,80)(42,81,56,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,22,59,15,80,8,73)(2,79,23,72,16,65,9,58)(3,64,24,57,17,78,10,71)(4,77,25,70,18,63,11,84)(5,62,26,83,19,76,12,69)(6,75,27,68,20,61,13,82)(7,60,28,81,21,74,14,67)(29,92,50,85,43,106,36,99)(30,105,51,98,44,91,37,112)(31,90,52,111,45,104,38,97)(32,103,53,96,46,89,39,110)(33,88,54,109,47,102,40,95)(34,101,55,94,48,87,41,108)(35,86,56,107,49,100,42,93) );

G=PermutationGroup([[(1,15),(3,17),(5,19),(7,21),(9,23),(11,25),(13,27),(29,68,43,82),(30,69,44,83),(31,70,45,84),(32,71,46,57),(33,72,47,58),(34,73,48,59),(35,74,49,60),(36,75,50,61),(37,76,51,62),(38,77,52,63),(39,78,53,64),(40,79,54,65),(41,80,55,66),(42,81,56,67),(85,99),(87,101),(89,103),(91,105),(93,107),(95,109),(97,111)], [(1,87,15,101),(2,102,16,88),(3,89,17,103),(4,104,18,90),(5,91,19,105),(6,106,20,92),(7,93,21,107),(8,108,22,94),(9,95,23,109),(10,110,24,96),(11,97,25,111),(12,112,26,98),(13,99,27,85),(14,86,28,100),(29,82,43,68),(30,69,44,83),(31,84,45,70),(32,71,46,57),(33,58,47,72),(34,73,48,59),(35,60,49,74),(36,75,50,61),(37,62,51,76),(38,77,52,63),(39,64,53,78),(40,79,54,65),(41,66,55,80),(42,81,56,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,66,22,59,15,80,8,73),(2,79,23,72,16,65,9,58),(3,64,24,57,17,78,10,71),(4,77,25,70,18,63,11,84),(5,62,26,83,19,76,12,69),(6,75,27,68,20,61,13,82),(7,60,28,81,21,74,14,67),(29,92,50,85,43,106,36,99),(30,105,51,98,44,91,37,112),(31,90,52,111,45,104,38,97),(32,103,53,96,46,89,39,110),(33,88,54,109,47,102,40,95),(34,101,55,94,48,87,41,108),(35,86,56,107,49,100,42,93)]])

55 conjugacy classes

class 1 2A2B2C4A···4E7A7B7C8A8B8C8D14A···14I14J···14O28A···28R28S···28X
order12224···4777888814···1414···1428···2828···28
size11284···4222565656562···28···84···48···8

55 irreducible representations

dim111112222224444
type+++++--++
imageC1C2C2C4C4D4D7Dic7Dic7D14C7⋊D4C23⋊C4C42.C4C23⋊Dic7C42.Dic7
kernelC42.Dic7C28.10D4C7×C4.4D4C4×C28D4×C14C2×C28C4.4D4C42C2×D4C2×Q8C2×C4C14C7C2C1
# reps12122233331212612

Matrix representation of C42.Dic7 in GL4(𝔽113) generated by

112000
94100
00980
00098
,
98000
541500
00980
005415
,
163400
789700
0010684
00937
,
0010
0001
110100
1911200
G:=sub<GL(4,GF(113))| [112,94,0,0,0,1,0,0,0,0,98,0,0,0,0,98],[98,54,0,0,0,15,0,0,0,0,98,54,0,0,0,15],[16,78,0,0,34,97,0,0,0,0,106,93,0,0,84,7],[0,0,1,19,0,0,101,112,1,0,0,0,0,1,0,0] >;

C42.Dic7 in GAP, Magma, Sage, TeX

C_4^2.{\rm Dic}_7
% in TeX

G:=Group("C4^2.Dic7");
// GroupNames label

G:=SmallGroup(448,99);
// by ID

G=gap.SmallGroup(448,99);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,219,184,1571,570,297,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^14=b^2,d^2=b^2*c^7,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽